

SILABO

ASIGNATURA: LABORATORIO DE SISTEMAS DIGITALES II CODIGO: 8F0040

I DATOS GENERALES

1.1 Departamento Académico : Ingeniería Electrónica e Informática

1.2 Escuela Profesional : Ingeniería de Telecomunicaciones

1.3 Carrera Profesional : Ingeniería de Telecomunicaciones

1.4 Ciclo de Estudios : 05

1.5 Créditos : 02

1.6 Duración : 17 semanas

1.7 Horas Semanales : 03

1.7.1 Horas de Teoría : 01

1.7.2 Horas de práctica : 02

1.8 Plan de Estudios : 2001

1.9 Inicio de Clases : 17 de agosto del 2020

1.10 Finalización de clases : 17 de diciembre del 2020

1.11 Requisito : 8F0039 Laboratorio de Sistemas Digitales I

1.12 Docente : Ing. Vivar Recarte, Amador Humberto (responsable de la asignatura) Sección B

1.13 Semestre Académico : 2020-I

II SUMILLA

Introducción a los Sistemas Digitales. Sistemas de Electrónica Industrial, Control de circuitos integrados. Registros. Contadores. Memorias. Unidad central de procesos de los microprocesadores y micro controladores.

III COMPETENCIA DE LA ASIGNATURA

Diseñar circuitos secuenciales, usar dispositivos lógicos programables para el diseño de máquinas de estado finito implementando circuitos y verificando su funcionamiento.

IV CAPACIDADES

C1. INTRUMENTACIÓN. LECTURA Y ESCRITURA DE MEMORIAS

Utiliza los dispositivos de memoria RAM y ROM para implementar circuitos digitales previamente modelados mediante megafunciones en QUARTUS II o VHDL

C2: CIRCUITOS SECUENCIALES SÍNCRONOS CON MEMORIAS

Diseña contadores, registros usando tablas y diagramas de estado empleando progresivamente el simulador QUARTUS II en lenguaje VHDL siguiendo las reglas del análisis y síntesis de los circuitos secuenciales síncronos usando RTL.

C3. PACKAGES EN VHDL

Universidad Nacional Federico Villarreal

Diseña circuitos secuenciales utilizando programación de dispositivos en VHDL como librerías de componentes.

C4. MICROPROGRAMACIÓN PARA MÁQUINAS DE ESTADO ALGORÍTMICO (ASM)

Diseña sistemas secuenciales en base a un diagrama de estado algorítmico implementando sistemas complejos usando PACKAGE en VHDL.

V PROGRAMACIÓN DE CONTENIDOS

UNIDAD I

INTRUMENTACIÓN. LECTURA Y ESCRITURA DE MEMORIAS

Utiliza los dispositivos de memoria RAM y ROM para implementar circuitos digitales previamente modelados mediante megafunciones en QUARTUS II o VHDL

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	CONTENIDOS ACTITUDINALES	CRITERIOS DE EVALUACION	HORAS
Semana 01	Osciloscopio Lab_1: Uso de Osciloscopio	Opera el osciloscopio y generador de señales para poner en práctica las funciones relativas a cada uno. Presenta Informe previo	De participación activa y trabajo en equipo, proactivo y colaborador dentro del grupo humano con responsabilidad.	Reconoce correctamente las funciones del osciloscopio.	03
Semana 02	Las memorias RAM, ROM, tipos características, dinámicas, estáticas, PROM, EPROM, VHDL Lab_2: Memorias	Realiza el estudio de las memorias y sus aplicaciones para poder programarlas según las especificaciones técnicas. Presenta informe final de Lab_1	De participación activa y trabajo en equipo, proactivo y colaborador dentro del grupo humano con responsabilidad	Programa correctamente una memoria paralela.	03
Semana 03	EEPROM, HxD.Programación de memorias.Comandos de VHDL para QUARTUS II Lab_3: Programación de Memorias en Quartus II	Programa las memorias EPROM usando software QUARTUS II en lenguaje VHDL Presenta informe final de Lab_2	De participación activa y trabajo en equipo, proactivo y colaborador dentro del grupo humano con responsabilidad	Simula correctamente el funcionamiento de una memoria en QUARTUS II	03

Semana 04	Expansión de Memoria Lab_4: Expansión de memoria TRABAJO ACADÉN	Diseña el circuito de expansión de memoria. Presenta informe final de Lab_3 IICO DE LA UNIDAD 01	Demuestra habilidad en la solución que le permitirá lograr el producto (elaboración de un informe), así como la posterior sustentación y defensa del mismo.	Diseña correctamente un circuito de expansión de memoria.	03		
Fuentes de Información: 1. Floyd, T.L. Digital Fundamentals. Ed. Prentice Hall.							

ELECTRÓNICA E INFORMÁTICA

"Año de la universalización de la salud".

UNIDAD II CIRCUITOS SECUENCIALES SÍNCRONOS CON MEMORIAS

Diseña contadores, registros usando tablas y diagramas de estado empleando progresivamente el simulador QUARTUS II en lenguaje VHDL siguiendo las reglas del análisis y síntesis de los circuitos secuenciales síncronos usando RTL.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	CONTENIDOS ACTITUDINALES	CRITERIOS DE EVALUACION	HORAS
Semana 05	Diseño de contadores ascendentes, descendentes, especiales. Lab_5: Diseño de Contadores	Utiliza el diagrama de estado como herramienta de diseño ayudado de software HxD para implementar contadores ascendentes y descendentes. Presenta informe final de Lab_4	De participación activa: en el Proceso de mejoramiento continuo, en el estudio de los circuitos analizados en clase	. Diseña correctamente circuitos contadores utilizando QUARTUS II	03
Semana 06	Diseño de registros de propósito específico. SISO, PIPO, PISO y SIPO Lab_6: Diseño de registros	Implementa registros de desplazamiento utilizando QUARTUS II en VHDL y opción RTL Presenta informe final de Lab_5	De participación activa: en el Proceso de mejoramiento continuo, en el estudio de los circuitos analizados en clase	Diseña correctamente las diferentes configuraciones de registros	03
Semana 07	Diseño de registros universales empleando lógica programada. Lab_7: Diseño de registro universal	Usa tabla de estados como herramienta de diseño a través de QUARTUS II y opción RTL Presenta informe final de Lab_6	De participación activa: en el Proceso de mejoramiento continuo, en el estudio de los circuitos analizados en clase	Diseña correctamente un registro universal	03
Semana 08	Máquinas de estado con memorias. Circuito Mealy y Circuito Moore Lab_8: Máquinas de Estado Finito EXAMEN PARCIAL	Usa la tabla de estados para el diseño de máquinas de estado Presenta informe final de Lab_7 DE LA UNIDAD 01 Y 02	Demuestra habilidad en la solución que le permitirá lograr el producto (elaboración del informe), así como la posterior sustentación y defensa del mismo.	RESUELVE EL EXAMEN PARCIAL	03
Fuentes de	Información:	22 21 01 12 12 VI	defenda del mismo.		

1. Floyd, T.L. Digital Fundamentals. Ed. Prentice Hall.

UNIDAD III PACKAGES EN VHDL

Diseña circuitos secuenciales utilizando programación de dispositivos en VHDL como librerías de componentes.

Discha Circ	unos secuenciares utilizando program	actori de dispositivos en VIIDE como ne	secuenciales utilizando programación de dispositivos en VHDL como librerias de componentes.			
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	CONTENIDOS ACTITUDINALES	CRITERIOS DE EVALUACION	HORAS	
Semana 09	Componentes y como declararlos dentro de un programa o subprograma. Lab_9: Declaración de componentes	Crea componentes MSI a nivel de VHDL Presenta informe final de Lab_8	De participación activa: en el Proceso de mejoramiento continuo, en la aplicación de los circuitos estudiados en clase.	Declara correctamente los componentes de un circuito	03	
Semana 10	Librerías de componentes Lab_10: Creación de librerías de componentes	Crea a través de QUARTUS II las librerías de componentes de un sistema digital Presenta informe final de Lab_9	De participación activa: en el Proceso de mejoramiento continuo, en los circuitos estudiados en clase.	Crea correctamente las librerías de componentes de un sistema digital	03	
Semana 11	Diseño de circuitos secuenciales usando librerías de componentes. Lab_11: Circuitos secuenciales y librería de componentes	Diseña circuitos secuenciales usando librerías Presenta informe final de Lab_10	De participación activa: en el Proceso de mejoramiento continuo, en los circuitos estudiados en clase.	Domina en entorno de diseño de QUARTUS II	03	

Semana 12	Retardo inercial y no inercial Lab_12: Retardos en VHDL TRABA IO ACADÉM	Comprueba la existencia de retardos en un sistema digital Presenta informe final de Lab_11 IICO DE LA UNIDAD 03	De participación activa: en el Proceso de mejoramiento continuo, en los circuitos estudiados en clase.	. Minimiza correctamente el retardo inercial y no inercial	03	
Euontos do		THE OF THE CIVIDINE VS			<u>'</u>	
Fuentes de Información:						
1.	1. Floyd, T.L. Digital Fundamentals. Ed. Prentice Hall					

UNIDAD IV MICROPROGRAMACIÓN PARA MÁQUINAS DE ESTADO ALGORÍTMICO (ASM)

Diseña sistemas secuenciales en base a un diagrama de estado algorítmico implementando sistemas complejos usando PACKAGE en VHDL.

2 10 01100 515	ternas secuenciales en base a un diagr		1 3		
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	CONTENIDOS ACTITUDINALES	CRITERIOS DE EVALUACION	HORAS
Semana 13	Unidad de proceso de datos (ruta de datos). Unidad de control (controladores). Lab_13: Diseño de Unidad de Proceso y Unidad de Control	Diseña mediante el uso de QUARTUS II las unidades PU y CU de un sistema digital Presenta informe final de Lab_12	De participación activa: en el Proceso de mejoramiento continuo, en la aplicación de los circuitos estudiados en clase.	Diseña correctamente la PU y CU de un sistema digital	03
Semana 14	Máquina de Mealy y Moore en VHDL Lab_14: Máquina de Mealy y Moore en VHDL	Usa QUARTUS II para el diseño de máquinas de Mealy y Moore Presenta informe final de Lab_13	De participación activa: en el Proceso de mejoramiento continuo, en la aplicación de los circuitos estudiados en clase.	Diseña correctamente una máquina de Mealy y Moore	03
Semana 15	Diagrama ASM. Control microprogramado. Respuesta condicional de controladores Lab_15: Diagramas ASM	Implementa circuitos, apoyándose con simulación y armado de circuitos reales. Presenta informe final de Lab_14	De participación activa: en el Proceso de mejoramiento continuo, en la aplicación de los circuitos estudiados en clase.	Elabora correctamente un diagrama ASM	03

Semana 16	Lab_16: Microcontroladores PIC EXAMEN FINAL	Programa mediante lenguaje C un microcontrolador 16F877A Presenta informe final de Lab_15 y Lab_16	Demuestra habilidad en la solución que le permitirá lograr el producto (elaboración del informe), así como la posterior sustentación y defensa del mismo.	RESUELVE EL EXAMEN FINAL	03	
Fuentes de Información:						
1. Floyd, T.L. Digital Fundamentals. Ed. Prentice Hall						

Semana

17 EXAMEN SUSTITUTORIO/EXAMEN DE APLAZADOS

VI METODOLOGIA

6.1 Estrategias centradas en el aprendizaje

- Aprendizaje basado en planteamiento y solución de problemas variados
- Trabajo en grupos
- Autoevaluación del trabajo y del aprendizaje.
- Asesorías

6.2 Estrategias centradas en la enseñanza

- Trabajos en laboratorio virtual mediante simulación
- Modelado por el profesor
- Videos e instructivos.

VII RECURSOS PARA EL APRENDIZAJE

- Medios Audiovisuales: Proyectores, multimedia, Power Point(PPT), internet.
- Material Bibliográfico: separatas.
- Medios y Materiales Electrónicos: Sesiones de clase en Microsoft Teams, micrófono, parlantes Multism 14.2 versión Profesional, Fritzing

VIII EVALUACION:

- De acuerdo al **COMPENDIO DE NORMAS ACADÉMICAS** de esta Superior Casa de Estudios, en su artículo 13° señala lo siguiente: "Los exámenes y otras formas de evaluación se califican en escala vigesimal (de 1 a 20) en números enteros. La nota mínima aprobatoria es once (11). El medio punto (0.5) es a favor de estudiante".
- Del mismo modo, en referido documento en su artículo 16°, señala: Los exámenes escritos son calificados por los docentes responsables de la asignatura y entregados a los estudiantes. Las actas se entregarán a la Dirección de la Escuela Profesional, dentro de los plazos fijados.
- Asimismo, el artículo 36° menciona: La asistencia de los estudiantes a las clases es obligatoria; el control corresponde a los docentes de la asignatura. Si un estudiante acumula el 30% de inasistencias injustificadas totales durante el dictado de una asignatura, queda inhabilitado para rendir el examen final y es desaprobado en la asignatura, sin derecho a rendir examen de aplazado, debiendo el docente, informar oportunamente al Director de Escuela.

• La evaluación de los estudiantes, se realizará de acuerdo a los siguientes criterios:

N°	CODIGO	NOMBRE DE LA EVALUACION	PORCENTAJE
01	EP	EXAMEN PARCIAL	30 %
02	EF	EXAMEN FINAL	30 %
03	TA	TRABAJOS ACADÉMICOS	40 %
		TOTAL	100%

La Nota Final (NF) de la asignatura se determinará en base a la siguiente manera:

$$NF = EP*30\% + EF*30\% + TA*40\%$$

$$100$$

Criterios:

- **EP** = De acuerdo a la naturaleza de la asignatura.
- **EF** = De acuerdo a la naturaleza de la asignatura.
- ➤ TA = Los trabajos académicos serán consignadas conforme al COMPENDIO DE NORMAS ACADÉMICAS de esta Superior Casa de Estudios, según el detalle siguiente:
 - a) Prácticas Calificadas.
 - b) Informes de Laboratorio.
 - c) Informes de prácticas de campo.
 - d) Seminarios calificados.
 - e) Exposiciones.

- f) Trabajos monográficos.
- g) Investigaciones bibliográficas.
- h) Participación en trabajos de investigación dirigidos por profesores de la asignatura.
- i) Otros que se crea conveniente de acuerdo a la naturaleza de la asignatura.

IX FUENTES DE INFORMACION (en APA)

9.1 Bibliográficas

FLOYD, T.L. Digital Fundamentals. Ed. Prentice Hall

9.2 Electrónicas

Lima, 20 de julio del 2020

DRA. ROMERO VALENCIA, MONICA PATRICIA
DEPARTAMENTO ACADEMICO DE LA FIEI
99910
mromero@unfv.edu.pe

ING. VIVAR RECARTE, AMADOR HUMBERTO 99150

avivar@unfv.edu.pe