

"Año del Diálogo y la Reconciliación Nacional"

SÍLABO

ASIGNATURA: MECÁNICA DE SUELOS II CÓDIGO: 8A0026

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería Civil
1.2 Escuela Profesional : Ingeniería Civil
1.3 Carrera Profesional : Ingeniería Civil

1.4 Ciclo de estudios : VII1.5 Créditos : 03

1.6 Duración : 17 semanas

1.7 Horas semanales

1.7.1 Horas de teoría : 2 horas semanales1.7.2 Horas de práctica : 2 horas semanales

1.8 Plan de estudios : Adecuación de Plan de Estudios Sistema Semestral 2001.

1.9 Inicio de clases : 02 de Abril de 20191.10 Finalización de clases : 25 de Julio del 2019

1.11 Requisito : Mecánica de suelos 1 (Código 8A0019)

1.12 Docentes : Aybar Arriola, Gustavo

Madrid Argomedo, Manuel Ricardo

Zavala Ascaño, Gerber

1.13 Semestre Académico : 2019 – I / 2019 - II

II. SUMILLA

La asignatura de Mecánica de Suelos II pertenece al **área** curricular Básica Tecnológica y su **naturaleza** es de carácter teórico-práctico (laboratorio), su condición es obligatoria. El estudiante al concluir la asignatura **establece** las propiedades geotécnicas de los suelos para resistir y transmitir las presiones aplicadas, así como su incidencia en la masa del suelo, para el cálculo de elementos estructurales, **empleando** las teorías geotécnicas y resultados de ensayos de laboratorio.

Comprende los siguientes ejes **temáticos**: I) Resistencia al esfuerzo cortante y distribución de presiones en los suelos; II) Consolidación de suelos; III) Capacidad de carga de los suelos; IV) presión lateral y estabilidad de taludes.

El curso tiene 4 horas semanales, de las cuales 2 horas son de teoría, y las otras 2 horas son de práctica.

El curso tiene asignado un total de 3 créditos.

Los requisitos para este curso, es haber aprobado el curso de Mecánica de Suelos 1 (Código 8A0019).

III. COMPETENCIA DE LA ASIGNATURA

Establece los parámetros geotécnicos de las propiedades de los materiales, siguiendo las teorías de la mecánica de suelos e hidráulica para el diseño de estructuras.

IV. CAPACIDADES

- C1: Calcula la resistencia al esfuerzo cortante y distribución de presiones en los suelos, desarrollando teorías de relaciones de esfuerzodeformación y esfuerzos de corte, para establecer la capacidad de resistencia y deformación de los suelos.
- C2: Calcula la consolidación de los suelos desarrollando teorías elásticas y edométricas, para definir el grado y tiempo de asentamiento de fundaciones.
- C3: Establece la capacidad de carga valorando la propiedad de resistencia a esfuerzos, así como teorías de fallas de suelos, para evitar que colapse.
- C4: Establece la presión lateral de suelos y estabilidad de taludes, valorando la propiedad de resistencia a fallas por corte, y de presión de masas de suelos, para evitar que colapse.

V. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I

Resistencia al esfuerzo cortante y distribución de presiones en los suelos

C1: Calcula la resistencia al esfuerzo cortante y distribución de presiones en los suelos, desarrollando teorías de relaciones de esfuerzo-deformación y

esfuerzos de corte, para establecer la capacidad de resistencia y deformación de los suelos.

SEMANA	CONTENIDOS	CONTENIDOS	CONTENIDOS	CRITERIOS DE	HORAS
SLWANA	CONCEPTUALES	PROCEDIMENTALES	ACTITUDINALES	EVALUACIÓN	HONAS
Semana N° 1	Introducción al curso. Relaciones esfuerzo -deformación en suelos: Comportamiento elástico. Comportamiento elasto-plástico.	Emplea teorías de Robert Hook (proporcionalidad de esfuerzo y desplazamiento), Tomas Young (Módulo Elástico); conceptos de elasticidad y elasto-plasticidad. Desarrollo del criterio de falla de Mhor-Coulumb.		Intercambio oral	4
Semana N° 2	Esfuerzos en la masa de suelos: Esfuerzo total normal. Esfuerzo efectivo. Presión de poros.	Obtiene los esfuerzos geotécnicos de la masa del suelo.		Práctica calificada (Examen de ingreso)	4
Semana N° 3	Criterio de falla Mhor-Coulumb. Ensayos que determinan esfuerzos de corte en los suelos.	Obtiene y usa los esfuerzos de corte de los suelos empleando teorías y ensayos de laboratorio como Corte Directo y Triaxial. Ejecuta en laboratorio la preparación de muestras de suelos.	Manifiesta las presiones geotécnicas y las inducidas en los suelos.	Intercambio oral	4
Semana N° 4	Distribución de presiones en los suelos, para condiciones de Carga concentrada y Carga distribuida. TRABAJO ACADÉMICO CORRES	teorías de Boussinesq, Westergard, Fadum, entre otros. Ejecuta en laboratorio la granulometría y límites de consistencia.		Intercambio oral	4

Fuentes de Consulta: BRAJA, M.Das. Fundamentos de ingeniería geotécnica. México, D.F.: International Thomson Editores, S.A., 2001, 594 p. ISBN 970-686-061-4.

UNIDAD II								
Consolidación de suelos								
C2: Calcula la consolidación de los suelos desarrollando teorías elásticas y edométricas, para definir el grado y tiempo de asentamiento de fundaciones.								
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	CONTENIDOS ACTITUDINALES	CRITERIOS DE EVALUACIÓN	HORAS			
Semana N° 5	Teoría Elástica y Teoría Edométrica en la mecánica de suelos.	Emplea las teorías de elasticidad de Hooke, Terzaghi, Janbu-Bjerrum aplicadas a los suelos.	Expresa los asentamientos de fundaciones en base a las propiedades de los suelos y las	Intercambio oral	4			

		Ejecuta en laboratorio ensayos de corte directo.	presiones inducidas por estructuras.	as	
Semana N° 6	Ensayos de consolidación para suelos normalmente consolidados, y pre consolidados.	Emplea la teoría edométrica de Terzaghi, basada en los ensayos de consolidación uniaxial. Ejecuta en laboratorio ensayos de consolidación.		Intercambio oral	4
Semana N° 7	Asentamientos de los suelos finos. Asentamientos de los suelos granulares.	Emplea la teoría edométrica de Terzaghi, basada en los ensayos de consolidación uniaxial. Obtiene los asentamientos de los suelos empleando los modelos elásticos, edométricos y empíricos. Ejecuta en laboratorio ensayos de consolidación.		Informe de laboratorio (Clasificación de suelos y corte directo) Práctica calificada (Clasificación de suelos, gravimetría y volumetría).	4
Semana N° 8	EXAMEN PARCIAL: Evaluación c				

Fuentes de Consulta: BRAJA, M.Das. Principio de ingeniería de cimentaciones. 5a ed. México, D.F.: International Thomson Editores, S.A., 2006, 743 p. ISBN 970-686-481-4.

		UNIDAD III Capacidad de carga de los			
C3: Estable	ece la capacidad de carga valorando l	a propiedad de resistencia a esfuerzos,	así como teorías de fallas de sue	los, para evitar que colap	se.
SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	CONTENIDOS ACTITUDINALES	CRITERIOS DE EVALUACIÓN	HORAS
Semana N° 9	Tipos de fallas que se producen en los suelos: Falla por corte general. Falla por punzonamiento. Falla por corte local.	Identifica los tipos de fallas en los suelos, empleando los criterios señalados por Terzaghi. Ejecuta en laboratorio ensayos de densidad de campo.	Expresa la capacidad de carga de los suelos.	Intercambio oral	4
Semana N° 10	Capacidad de carga de los suelos empleando los criterios de Karl Terzaghi.			Intercambio oral. Practica calificada (Consolidación de suelos)	4
Semana N° 11	Capacidad de carga de los suelos empleando los criterios de Meyerhof, Hansen y Vesic.	Emplea los criterios desarrollados por		Intercambio oral	4
Semana N° 12	Presiones admisibles de los suelos.	Emplea los cálculos de capacidad portante que se obtuvo en el establecimiento de la presión admisible del suelo. Ejecuta en laboratorio demostración de falla de suelos.		Informe de laboratorio (Clasificación de suelos, densidad de campo).	4

TRABAJO ACADÉMICO CORRESPONDIENTE A LA UNIDAD Nº III

Fuentes de Consulta: BRAJA, M.Das. Principio de ingeniería de cimentaciones. 5a ed. México, D.F.: International Thomson Editores, S.A., 2006, 743 p. ISBN 970-686-481-4.

UNIDAD IV Presión lateral y estabilidad de taludes.

C4: Establece la presión lateral de suelos y estabilidad de taludes, valorando la propiedad de resistencia a fallas por corte, y de presión de masas de suelos, para evitar que colapse.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	CONTENIDOS ACTITUDINALES	CRITERIOS DE EVALUACIÓN	HORAS
Semana N° 13	Presión o empuje de suelos en reposo.	Emplea las teorías de presiones desarrolladas para suelos en reposo (Coulumb y Rankine). Ejecuta en laboratorio ensayos de clasificación de suelos y corte directo.		Intercambio oral Práctica calificada (capacidad de carga de suelos)	4
Semana N° 14	Presión o empuje de suelos activo y pasivo.	Emplea las teorías de Coulumb y Rankine desarrolladas para suelos. Ejecuta en laboratorio ensayos de consolidación de suelos.	Expresa las presiones y verificación de estabilidad de muros de contención y taludes.	Intercambio oral Exposiciones (Trabajo de laboratorio).	4
Semana N° 15	Estabilidad de muros de contención, y estabilidad de taludes.	Emplea las teorías de la física y mecánica de suelos. Emplea las teorías de equilibrio límite de geotecnia.		Exposiciones (Trabajo de calicatas en suelos). Informe final de laboratorio.	4
Semana N° 16	EXAMEN FINAL: Evaluación corre				
Semana N° 17	EXAMEN SUSTITUTORIO Y DE A				

Fuentes de Consulta: BRAJA, M.Das. Principio de ingeniería de cimentaciones. 5a ed. México, D.F.: International Thomson Editores, S.A., 2006, 743 p. ISBN 970-686-481-4.

VI. METODOLOGÍA

• 6.1 Estrategias centradas en el aprendizaje - enseñanza

Expositivo-interactivo

Trabajos en equipo

Demostración-ejecución

Cuadros sinópticos

Intercambios orales

VII. RECURSOS PARA EL APRENDIZAJE

Computadora Proyector

Diapositivas

Archivos electrónicos

Separatas

Laboratorio de mecánica de suelos

Materiales para hacer ensayos (Suelos, costales, bolsas, brochas, franela, etc.)

VIII. EVALUACIÓN

- De acuerdo al **COMPENDIO DE NORMAS ACADÉMICAS** de esta Superior Casa de Estudios, en su artículo 13° señala lo siguiente: "Los exámenes y otras formas de evaluación se califican en escala vigesimal (de 1 a 20) en números enteros. La nota mínima aprobatoria es once (11). El medio punto (0.5) es a favor de estudiante".
- Del mismo modo, en referido documento en su artículo 16°, señala: Los exámenes escritos son calificados por los docentes responsables de la asignatura y entregados a los estudiantes. Las actas se entregarán a la Dirección de la Escuela Profesional, dentro de los plazos fijados.
- Asimismo, el artículo 36° menciona: La asistencia de los estudiantes a las clases es obligatoria; el control corresponde a los docentes de la asignatura. Si un estudiante acumula el 30% de inasistencias injustificadas totales durante el dictado de una asignatura, queda inhabilitado para rendir el examen final y es desaprobado en la asignatura, sin derecho a rendir examen de aplazado, debiendo el docente, informar oportunamente al Director de Escuela.
- La evaluación de los estudiantes, se realizará de acuerdo a los siguientes criterios:

N°	CÓDIGO	NOMBRE DE LA EVALUACIÓN	PORCENTAJE
01	EP	EXAMEN PARCIAL	20%
02	EF	EXAMEN FINAL	40%
03	TA	TRABAJOS ACADÉMICOS	40%
		TOTAL	100%

La Nota Final (NF) de la asignatura se determinará en base a la siguiente manera:

Criterios:

- EP = De acuerdo a la naturaleza de la asignatura.
- > EF = De acuerdo a la naturaleza de la asignatura.

- > TA = Los trabajos académicos serán consignadas conforme al COMPENDIO DE NORMAS ACADÉMICAS de esta Superior Casa de Estudios, según el detalle siguiente:
 - a) Prácticas Calificadas.
 - b) Informes de Laboratorio.
 - c) Informes de prácticas de campo.
 - d) Seminarios calificados.
 - e) Exposiciones.
 - f) Trabajos monográficos.
 - g) Investigaciones bibliográficas.
 - h) Participación en trabajos de investigación dirigidos por profesores de la asignatura.
 - i) Otros que se crea conveniente de acuerdo a la naturaleza de la asignatura.

IX. FUENTES DE CONSULTA

• 9.1 Bibliográficas

BRAJA, M.Das. Fundamentos de ingeniería geotécnica. México, D.F.: International Thomson Editores, S.A., 2001, 594 p. ISBN 970-686-061-4.

BRAJA, M.Das. Principio de ingeniería de cimentaciones. 5a ed. México, D.F.: International Thomson Editores, S.A., 2006, 743 p. ISBN 970-686-481-4.

LAMBE T. William, WHITMAN Robert V. Mecánica de suelos. 2a ed. México, D.F.: Editorial Limusa S.A., 2001, 582 p. ISBN 968-18-1894-6.

DELGADO Vargas Manuel. Ingeniería de fundaciones. Fundamentos e introducción al análisis geotécnico. Colombia: Editorial escuela colombiana de ingeniería, 2008, 541 p.
ISBN 958-95742-9-7.

TSCHEBOTARIOF P. Gregory. Mecánica del suelo. Cimientos y estructuras de tierra. 3ª ed. Madrid: Aguilar, S.A. de Ediciones, 1963, 642 p.

IGLESIAS Pérez, Celso. Mecánica del Suelo. Editorial Síntesis S.A., 1997, 590 p. ISBN 84-7738-438-X.

TERZAGHI Karl, PECK Ralph B. Mecánica de suelos en la ingeniería práctica. 2a ed. Argentina: Librería el Ateneo Editorial, 1986, 699 p. ISBN 950-02-5258-9.

9.2 Electrónicas

Criterios:			

> Se utilizará los sistemas APA y VANCOUVER de acuerdo a la carrera profesional.

Lima, de Marzo de 2018

FIRMA Y NOMBRE DEL DIRECTOR DE DEPARTAMENTO ACADÉMICO

Código Docente Correo electrónico FIRMA Y NOMBRE DEL DOCENTE

Código Docente Correo electrónico

Sello y fecha de recepción del sílabo por parte del Departamento Académico